Generalized reliability based on distances

12/15/2019
by   Meng Xu, et al.
0

The intraclass correlation coefficient (ICC) is a classical index of measurement reliability. With the advent of new and complex types of data for which the ICC is not defined, there is a need for new ways to assess reliability. To meet this need, we propose a new distance-based intraclass correlation coefficient (dbICC), defined in terms of arbitrary distances among observations. We introduce a bias correction to improve the coverage of bootstrap confidence intervals for the dbICC, and demonstrate its efficacy via simulation. We illustrate the proposed method by analyzing the test-retest reliability of brain connectivity matrices derived from a set of repeated functional magnetic resonance imaging scans. The Spearman-Brown formula, which shows how more intensive measurement increases reliability, is extended to encompass the dbICC.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset