Generalized notions of sparsity and restricted isometry property. Part I: A unified framework

06/28/2017
by   Marius Junge, et al.
0

The restricted isometry property (RIP) is an integral tool in the analysis of various inverse problems with sparsity models. Motivated by the applications of compressed sensing and dimensionality reduction of low-rank tensors, we propose generalized notions of sparsity and provide a unified framework for the corresponding RIP, in particular when combined with isotropic group actions. Our results extend an approach by Rudelson and Vershynin to a much broader context including commutative and noncommutative function spaces. Moreover, our Banach space notion of sparsity applies to affine group actions. The generalized approach in particular applies to high order tensor products.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset