Generalized moving least squares vs. radial basis function finite difference methods for approximating surface derivatives

09/07/2023
by   Andrew M. Jones, et al.
0

Approximating differential operators defined on two-dimensional surfaces is an important problem that arises in many areas of science and engineering. Over the past ten years, localized meshfree methods based on generalized moving least squares (GMLS) and radial basis function finite differences (RBF-FD) have been shown to be effective for this task as they can give high orders of accuracy at low computational cost, and they can be applied to surfaces defined only by point clouds. However, there have yet to be any studies that perform a direct comparison of these methods for approximating surface differential operators (SDOs). The first purpose of this work is to fill that gap. For this comparison, we focus on an RBF-FD method based on polyharmonic spline kernels and polynomials (PHS+Poly) since they are most closely related to the GMLS method. Additionally, we use a relatively new technique for approximating SDOs with RBF-FD called the tangent plane method since it is simpler than previous techniques and natural to use with PHS+Poly RBF-FD. The second purpose of this work is to relate the tangent plane formulation of SDOs to the local coordinate formulation used in GMLS and to show that they are equivalent when the tangent space to the surface is known exactly. The final purpose is to use ideas from the GMLS SDO formulation to derive a new RBF-FD method for approximating the tangent space for a point cloud surface when it is unknown. For the numerical comparisons of the methods, we examine their convergence rates for approximating the surface gradient, divergence, and Laplacian as the point clouds are refined for various parameter choices. We also compare their efficiency in terms of accuracy per computational cost, both when including and excluding setup costs.

READ FULL TEXT

page 5

page 12

research
07/04/2014

A Cylindrical Basis Function for Solving Partial Differential Equations on Manifolds

Numerical solutions of partial differential equations (PDEs) on manifold...
research
04/13/2022

MGM: A meshfree geometric multilevel method for systems arising from elliptic equations on point cloud surfaces

We develop a new meshfree geometric multilevel (MGM) method for solving ...
research
07/10/2015

A Closed-Form Formulation of HRBF-Based Surface Reconstruction

The Hermite radial basis functions (HRBFs) implicits have been used to r...
research
02/21/2019

A Fully Lagrangian Meshfree Framework for PDEs on Evolving Surfaces

We propose a novel framework to solve PDEs on moving manifolds, where th...
research
01/08/2021

An iterative algorithm for approximating roots of integers

We explore an algorithm for approximating roots of integers, discuss its...
research
10/15/2019

A Robust Hyperviscosity Formulation for Stable RBF-FD Discretizations of Advection-Diffusion-Reaction Equations on Manifolds

We present a new hyperviscosity formulation for stabilizing radial basis...

Please sign up or login with your details

Forgot password? Click here to reset