Generalized Lorenz dominance orders

12/07/2022
by   Leo Egghe, et al.
0

We extend the discrete majorization theory by working with non-normalized Lorenz curves. Then we prove two generalizations of the Muirhead theorem. These not only use elementary transfers but also local increases. Together these operations are described as elementary impact increases. The first generalization shows that if an array X is dominated, in the generalized sense, by an array Y then Y can be derived from X by a finite number of elementary impact increases and this in such a way that each step transforms an array into a new one which is strictly larger in the generalized majorization sense. The other one shows that if the dominating array, Y, is ordered decreasingly then elementary impact increases starting from the dominated array, X, lead to the dominating one. Here each step transforms an array to a new one for which the decreasingly ordered version dominates the previous one and is dominated by Y.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro