Generalized Laplace Inference in Multiple Change-Points Models

03/28/2018
by   Alessandro Casini, et al.
0

Under the classical long-span asymptotic framework we develop a class of Generalized Laplace (GL) inference methods for the change-point dates in a linear time series regression model with multiple structural changes analyzed in, e.g., Bai and Perron (1998). The GL estimator is defined by an integration rather than optimization-based method and relies on the least-squares criterion function. It is interpreted as a classical (non-Bayesian) estimator and the inference methods proposed retain a frequentist interpretation. Since inference about the change-point dates is a nonstandard statistical problem, the original insight of Laplace to interpret a certain transformation of a least-squares criterion function as a statistical belief over the parameter space provides a better approximation about the uncertainty in the data about the change-points relative to existing methods. Simulations show that the GL estimator is in general more precise than the OLS estimator. On the theoretical side, depending on some input (smoothing) parameter, the class of GL estimators exhibits a dual limiting distribution; namely, the classical shrinkage asymptotic distribution of Bai and Perron (1998), or a Bayes-type asymptotic distribution.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset