Generalized Integrated Gradients: A practical method for explaining diverse ensembles

09/04/2019
by   John Merrill, et al.
0

We introduce Generalized Integrated Gradients (GIG), a formal extension of the Integrated Gradients (IG) (Sundararajan et al., 2017) method for attributing credit to the input variables of a predictive model. GIG improves IG by explaining a broader variety of functions that arise from practical applications of ML in domains like financial services. GIG is constructed to overcome limitations of Shapley (1953) and Aumann-Shapley (1974), and has desirable properties when compared to other approaches. We prove GIG is the only correct method, under a small set of reasonable axioms, for providing explanations for mixed-type models or games. We describe the implementation, and present results of experiments on several datasets and systems of models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro