Generalize Symbolic Knowledge With Neural Rule Engine

08/30/2018
by   Shen Li, et al.
0

Neural-symbolic learning aims to take the advantages of both neural networks and symbolic knowledge to build better intelligent systems. As neural networks have dominated the state-of-the-art results in a wide range of NLP tasks, it attracts considerable attention to improve the performance of neural models by integrating symbolic knowledge. Different from existing works, this paper investigates the combination of these two powerful paradigms from the knowledge-driven side. We propose Neural Rule Engine (NRE), which can learn knowledge explicitly from logic rules and then generalize them implicitly with neural networks. NRE is implemented with neural module networks in which each module represents an action of the logic rule. The experiments show that NRE could greatly improve the generalization abilities of logic rules with a significant increase on recall. Meanwhile, the precision is still maintained at a high level.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset