Generalization of bibliographic coupling and co-citation using the node split network

10/29/2021
by   Jinhyuk Yun, et al.
0

Bibliographic coupling (BC) and co-citation (CC) are the two most common citation-based coupling measures of similarity between scientific items. One can interpret these measures as second-neighbor relations distinguished by the direction of the citation: BC is a similarity between two citing items, whereas CC is that between two cited items. A previous study proposed a two-layer node split network that can emulate clusters of coupling measures in a computationally efficient manner; however, the lack of intralayer links makes it impossible to obtain exact similarities. Here, we propose novel methods to estimate intralayer similarity on a node split network using personalized PageRank and neural embedding. We demonstrate that the proposed measures are strongly correlated with the coupling measures. Moreover, our proposed method can yield precise similarities between items even if they are distant from each other. We also show that many links with high similarity are missing in the original BC/CC network, which suggests that it is essential to consider long-range similarities. Comparative experiments on global and local edge sampling suggest that local sampling is stable for both similarities in node split networks. This analysis offers valuable insights into the process of searching for significantly related items regarding each coupling measure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset