Generalization error of minimum weighted norm and kernel interpolation
We study the generalization error of functions that interpolate prescribed data points and are selected by minimizing a weighted norm. Under natural and general conditions, we prove that both the interpolants and their generalization errors converge as the number of parameters grow, and the limiting interpolant belongs to a reproducing kernel Hilbert space. This rigorously establishes an implicit bias of minimum weighted norm interpolation and explains why norm minimization may benefit from over-parameterization. As special cases of this theory, we study interpolation by trigonometric polynomials and spherical harmonics. Our approach is from a deterministic and approximation theory viewpoint, as opposed a statistical or random matrix one.
READ FULL TEXT