Generalization Bounds for Convolutional Neural Networks

10/03/2019 ∙ by Shan Lin, et al. ∙ 0

Convolutional neural networks (CNNs) have achieved breakthrough performances in a wide range of applications including image classification, semantic segmentation, and object detection. Previous research on characterizing the generalization ability of neural networks mostly focuses on fully connected neural networks (FNNs), regarding CNNs as a special case of FNNs without taking into account the special structure of convolutional layers. In this work, we propose a tighter generalization bound for CNNs by exploiting the sparse and permutation structure of its weight matrices. As the generalization bound relies on the spectral norm of weight matrices, we further study spectral norms of three commonly used convolution operations including standard convolution, depthwise convolution, and pointwise convolution. Theoretical and experimental results both demonstrate that our bounds for CNNs are tighter than existing bounds.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.