Gene Function Prediction with Gene Interaction Networks: A Context Graph Kernel Approach

04/22/2022
by   Xin Li, et al.
0

Predicting gene functions is a challenge for biologists in the post genomic era. Interactions among genes and their products compose networks that can be used to infer gene functions. Most previous studies adopt a linkage assumption, i.e., they assume that gene interactions indicate functional similarities between connected genes. In this study, we propose to use a gene's context graph, i.e., the gene interaction network associated with the focal gene, to infer its functions. In a kernel-based machine-learning framework, we design a context graph kernel to capture the information in context graphs. Our experimental study on a testbed of p53-related genes demonstrates the advantage of using indirect gene interactions and shows the empirical superiority of the proposed approach over linkage-assumption-based methods, such as the algorithm to minimize inconsistent connected genes and diffusion kernels.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset