Gender recognition and biometric identification using a large dataset of hand images
The human hand possesses distinctive features which can reveal gender information. In addition, the hand is considered one of the primary biometric traits used to identify a person. In this work, we propose a large dataset of human hand images with detailed ground-truth information for gender recognition and biometric identification. The proposed dataset comprises of 11,076 hand images (dorsal and palmar sides), from 190 subjects of different ages under the same lighting conditions. Using this dataset, a convolutional neural network (CNN) can be trained effectively for the gender recognition task. Based on this, we design a two-stream CNN to tackle the gender recognition problem. This trained model is then used as a feature extractor to feed a set of support vector machine classifiers for the biometric identification task. To facilitate access to the proposed dataset and replication of our experiments, the dataset, trained CNN models, and Matlab source code are available at (https://goo.gl/rQJndd).
READ FULL TEXT