Gaze Estimation using Transformer

05/30/2021 ∙ by Yihua Cheng, et al. ∙ 0

Recent work has proven the effectiveness of transformers in many computer vision tasks. However, the performance of transformers in gaze estimation is still unexplored. In this paper, we employ transformers and assess their effectiveness for gaze estimation. We consider two forms of vision transformer which are pure transformers and hybrid transformers. We first follow the popular ViT and employ a pure transformer to estimate gaze from images. On the other hand, we preserve the convolutional layers and integrate CNNs as well as transformers. The transformer serves as a component to complement CNNs. We compare the performance of the two transformers in gaze estimation. The Hybrid transformer significantly outperforms the pure transformer in all evaluation datasets with less parameters. We further conduct experiments to assess the effectiveness of the hybrid transformer and explore the advantage of self-attention mechanism. Experiments show the hybrid transformer can achieve state-of-the-art performance in all benchmarks with pre-training.To facilitate further research, we release codes and models in https://github.com/yihuacheng/GazeTR.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 9

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.