Gaussian quadrature rules for composite highly oscillatory integrals

12/28/2021
by   Menghan Wu, et al.
0

Highly oscillatory integrals of composite type arise in electronic engineering and their calculations is a challenging problem. In this paper, we propose two Gaussian quadrature rules for computing such integrals. The first one is constructed based on the classical theory of orthogonal polynomials and its nodes and weights can be computed efficiently by using tools of numerical linear algebra. We show that the rate of convergence of this rule depends solely on the regularity of the non-oscillatory part of the integrand. The second one is constructed with respect to a sign-changing function and the classical theory of Gaussian quadrature can not be used anymore. We explore theoretical properties of this Gaussian quadrature, including the trajectories of the quadrature nodes and the convergence rate of these nodes to the endpoints of the integration interval, and prove its asymptotic error estimate under suitable hypotheses. Numerical experiments are presented to demonstrate the performance of the proposed methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset