Gaussian Process Behaviour in Wide Deep Neural Networks

Whilst deep neural networks have shown great empirical success, there is still much work to be done to understand their theoretical properties. In this paper, we study the relationship between Gaussian processes with a recursive kernel definition and random wide fully connected feedforward networks with more than one hidden layer. We show that, under broad conditions, as we make the architecture increasingly wide, the implied random function converges in distribution to a Gaussian process, formalising and extending existing results by Neal (1996) to deep networks. To evaluate convergence rates empirically, we use maximum mean discrepancy. We then exhibit situations where existing Bayesian deep networks are close to Gaussian processes in terms of the key quantities of interest. Any Gaussian process has a flat representation. Since this behaviour may be undesirable in certain situations we discuss ways in which it might be prevented.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset