Gaussian Mixture Estimation from Weighted Samples

06/09/2021 ∙ by Daniel Frisch, et al. ∙ 0

We consider estimating the parameters of a Gaussian mixture density with a given number of components best representing a given set of weighted samples. We adopt a density interpretation of the samples by viewing them as a discrete Dirac mixture density over a continuous domain with weighted components. Hence, Gaussian mixture fitting is viewed as density re-approximation. In order to speed up computation, an expectation-maximization method is proposed that properly considers not only the sample locations, but also the corresponding weights. It is shown that methods from literature do not treat the weights correctly, resulting in wrong estimates. This is demonstrated with simple counterexamples. The proposed method works in any number of dimensions with the same computational load as standard Gaussian mixture estimators for unweighted samples.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.