GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for PINNs
With recent study of the deep learning in scientific computation, the PINNs method has drawn widespread attention for solving PDEs. Compared with traditional methods, PINNs can efficiently handle high-dimensional problems, while the accuracy is relatively low, especially for highly irregular problems. Inspired by the idea of adaptive finite element methods and incremental learning, we propose GAS, a Gaussian mixture distribution-based adaptive sampling method for PINNs. During the training procedure, GAS uses the current residual information to generate a Gaussian mixture distribution for the sampling of additional points, which are then trained together with history data to speed up the convergence of loss and achieve a higher accuracy. Several numerical simulations on 2d to 10d problems show that GAS is a promising method which achieves the state-of-the-art accuracy among deep solvers, while being comparable with traditional numerical solvers.
READ FULL TEXT