GAN Path Finder: Preliminary results

08/05/2019
by   Natalia Soboleva, et al.
0

2D path planning in static environment is a well-known problem and one of the common ways to solve it is to 1) represent the environment as a grid and 2) perform a heuristic search for a path on it. At the same time 2D grid resembles much a digital image, thus an appealing idea comes to being -- to treat the problem as an image generation task and to solve it utilizing the recent advances in deep learning. In this work we make an attempt to apply a generative neural network as a path finder and report preliminary results, convincing enough to claim that this direction of research is worth further exploration.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset