Game-theoretic Analysis to Content-adaptive Reversible Watermarking

05/05/2019 ∙ by Hanzhou Wu, et al. ∙ 0

While many games were designed for steganography and robust watermarking, few focused on reversible watermarking. We present a two-encoder game related to the rate-distortion optimization of content-adaptive reversible watermarking. In the game, Alice first hides a payload into a cover. Then, Bob hides another payload into the modified cover. The embedding strategy of Alice affects the embedding capacity of Bob. The embedding strategy of Bob may produce data-extraction errors to Alice. Both want to embed as many pure secret bits as possible, subjected to an upper-bounded distortion. We investigate non-cooperative game and cooperative game between Alice and Bob. When they cooperate with each other, one may consider them as a whole, i.e., an encoder uses a cover for data embedding with two times. When they do not cooperate with each other, the game corresponds to a separable system, i.e., both want to independently hide a payload within the cover, but recovering the cover may need cooperation. We find equilibrium strategies for both players under constraints.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.