GaitMAST: Motion-Aware Spatio-Temporal Feature Learning Network for Cross-View Gait Recognition

10/21/2022
by   Jingqi Li, et al.
0

As a unique biometric that can be perceived at a distance, gait has broad applications in person authentication, social security and so on. Existing gait recognition methods pay attention to extracting either spatial or spatiotemporal representations. However, they barely consider extracting diverse motion features, a fundamental characteristic in gaits, from gait sequences. In this paper, we propose a novel motion-aware spatiotemporal feature learning network for gait recognition, termed GaitMAST, which can unleash the potential of motion-aware features. In the shallow layer, specifically, we propose a dual-path frame-level feature extractor, in which one path extracts overall spatiotemporal features and the other extracts motion salient features by focusing on dynamic regions. In the deeper layers, we design a two-branch clip-level feature extractor, in which one focuses on fine-grained spatial information and the other on motion detail preservation. Consequently, our GaitMAST preserves the individual's unique walking patterns well, further enhancing the robustness of spatiotemporal features. Extensive experimental results on two commonly-used cross-view gait datasets demonstrate the superior performance of GaitMAST over existing state-of-the-art methods. On CASIA-B, our model achieves an average rank-1 accuracy of 94.1 GaitMAST achieves rank-1 accuracies of 96.1 coat wearing conditions, respectively, outperforming the second best by a large margin and demonstrating its robustness against spatial variations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset