Fuzzy Clustering by Hyperbolic Smoothing

07/09/2022
by   David Masis, et al.
0

We propose a novel method for building fuzzy clusters of large data sets, using a smoothing numerical approach. The usual sum-of-squares criterion is relaxed so the search for good fuzzy partitions is made on a continuous space, rather than a combinatorial space as in classical methods <cit.>. The smoothing allows a conversion from a strongly non-differentiable problem into differentiable subproblems of optimization without constraints of low dimension, by using a differentiable function of infinite class. For the implementation of the algorithm we used the statistical software R and the results obtained were compared to the traditional fuzzy C–means method, proposed by Bezdek.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro