Future Aware Pricing and Matching for Sustainable On-demand Ride Pooling

02/21/2023
by   Xianjie Zhang, et al.
0

The popularity of on-demand ride pooling is owing to the benefits offered to customers (lower prices), taxi drivers (higher revenue), environment (lower carbon footprint due to fewer vehicles) and aggregation companies like Uber (higher revenue). To achieve these benefits, two key interlinked challenges have to be solved effectively: (a) pricing – setting prices to customer requests for taxis; and (b) matching – assignment of customers (that accepted the prices) to taxis/cars. Traditionally, both these challenges have been studied individually and using myopic approaches (considering only current requests), without considering the impact of current matching on addressing future requests. In this paper, we develop a novel framework that handles the pricing and matching problems together, while also considering the future impact of the pricing and matching decisions. In our experimental results on a real-world taxi dataset, we demonstrate that our framework can significantly improve revenue (up to 17 reducing the number of vehicles (up to 14 obtain a given fixed revenue and the overall distance travelled by vehicles (up to 11.1 win-win scenario for all stakeholders (customers, drivers, aggregator, environment) involved by obtaining higher revenue for customers, drivers, aggregator (ride pooling company) while being good for the environment (due to fewer number of vehicles on the road and lesser fuel consumed).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset