Functional a posteriori error estimates for boundary element methods

12/12/2019 ∙ by Stefan Kurz, et al. ∙ 0

Functional error estimates are well-estabilished tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM as well as collocation, which makes our approach of particular interest for people working in engineering. Numerical experiments for the Laplace problem confirm the theoretical results.



There are no comments yet.


page 9

page 11

page 14

page 15

page 20

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.