Fully Convolutional Generative Machine Learning Method for Accelerating Non-Equilibrium Greens Function Simulations

09/17/2023
by   Preslav Aleksandrov, et al.
0

This work describes a novel simulation approach that combines machine learning and device modelling simulations. The device simulations are based on the quantum mechanical non-equilibrium Greens function (NEGF) approach and the machine learning method is an extension to a convolutional generative network. We have named our new simulation approach ML-NEGF and we have implemented it in our in-house simulator called NESS (nano-electronics simulations software). The reported results demonstrate the improved convergence speed of the ML-NEGF method in comparison to the standard NEGF approach. The trained ML model effectively learns the underlying physics of nano-sheet transistor behaviour, resulting in faster convergence of the coupled Poisson-NEGF simulations. Quantitatively, our ML- NEGF approach achieves an average convergence acceleration of 60 maintaining the same accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro