Full-Resilient Memory-Optimum Multi-Party Non-Interactive Key Exchange

by   Majid Salimi, et al.

Multi-Party Non-Interactive Key Exchange (MP-NIKE) is a fundamental cryptographic primitive in which users register into a key generation centre and receive a public/private key pair each. After that, any subset of these users can compute a shared key without any interaction. Nowadays, IoT devices suffer from a high number and large size of messages exchanged in the Key Management Protocol (KMP). To overcome this, an MP-NIKE scheme can eliminate the airtime and latency of messages transferred between IoT devices. MP-NIKE schemes can be realized by using multilinear maps. There are several attempts for constructing multilinear maps based on indistinguishable obfuscation, lattices and the Chinese Remainder Theorem (CRT). Nevertheless, these schemes are inefficient in terms of computation cost and memory overhead. Besides, several attacks have been recently reported against CRT-based and lattice-based multilinear maps. There is only one modular exponentiation-based MP-NIKE scheme in the literature which has been claimed to be both secure and efficient. In this article, we present an attack on this scheme based on the Euclidean algorithm, in which two colluding users can obtain the shared key of any arbitrary subgroup of users. We also propose an efficient and secure MP-NIKE scheme. We show how our proposal is secure in the random oracle model assuming the hardness of the root extraction modulo a composite number.



There are no comments yet.


page 5

page 6

page 7

page 8

page 9

page 11

page 13

page 14


Efficient Multilinear Map from Graded Encoding Scheme

Though the multilinear maps have many cryptographic applications, secure...

Cryptographic multilinear maps using pro-p groups

To any nilpotent group of class n, one can associate a non-interactive k...

The Twin Conjugacy Search Problem and Applications

We propose a new computational problem over the noncommutative group, ca...

Compatible Certificateless and Identity-Based Cryptosystems for Heterogeneous IoT

Certificates ensure the authenticity of users' public keys, however thei...

AMOUN: Asymmetric lightweight cryptographic scheme for wireless group communication

Multi-recipient cryptographic schemes provide secure communication, betw...

Supporting tangible multi-factor key exchange in households

A common approach to securing end-to-end connectivity between devices on...

FastZIP: Faster and More Secure Zero-Interaction Pairing

With the advent of the Internet of Things (IoT), establishing a secure c...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.