Full-attention based Neural Architecture Search using Context Auto-regression
Self-attention architectures have emerged as a recent advancement for improving the performance of vision tasks. Manual determination of the architecture for self-attention networks relies on the experience of experts and cannot automatically adapt to various scenarios. Meanwhile, neural architecture search (NAS) has significantly advanced the automatic design of neural architectures. Thus, it is appropriate to consider using NAS methods to discover a better self-attention architecture automatically. However, it is challenging to directly use existing NAS methods to search attention networks because of the uniform cell-based search space and the lack of long-term content dependencies. To address this issue, we propose a full-attention based NAS method. More specifically, a stage-wise search space is constructed that allows various attention operations to be adopted for different layers of a network. To extract global features, a self-supervised search algorithm is proposed that uses context auto-regression to discover the full-attention architecture. To verify the efficacy of the proposed methods, we conducted extensive experiments on various learning tasks, including image classification, fine-grained image recognition, and zero-shot image retrieval. The empirical results show strong evidence that our method is capable of discovering high-performance, full-attention architectures while guaranteeing the required search efficiency.
READ FULL TEXT