From Real to Complex: Enhancing Radio-based Activity Recognition Using Complex-Valued CSI
Activity recognition is an important component of many pervasive computing applications. Radio-based activity recognition has the advantage that it does not have the privacy concern and the subjects do not have to carry a device on them. Recently, it has been shown channel state information (CSI) can be used for activity recognition in a device-free setting. With the proliferation of wireless devices, it is important to understand how radio frequency interference (RFI) can impact on pervasive computing applications. In this paper, we investigate the impact of RFI on device-free CSI-based location-oriented activity recognition. We present data to show that RFI can have a significant impact on the CSI vectors. In the absence of RFI, different activities give rise to different CSI vectors that can be differentiated visually. However, in the presence of RFI, the CSI vectors become much noisier and activity recognition also becomes harder. Our extensive experiments show that the performance of state-of-the-art classification methods may degrade significantly with RFI. We then propose a number of counter measures to mitigate the impact of RFI and improve the location-oriented activity recognition performance. We are also the first to use complex-valued CSI to improve the performance in the environment with RFI.
READ FULL TEXT