From Linear Term Rewriting to Graph Rewriting with Preservation of Termination

06/25/2021 ∙ by Roy Overbeek, et al. ∙ 0

Encodings of term rewriting systems (TRSs) into graph rewriting systems usually lose global termination, meaning the encodings do not terminate on all graphs. A typical encoding of the terminating TRS rule a(b(x)) -> b(a(x)), for example, may be indefinitely applicable along a cycle of a's and b's. Recently, we introduced PBPO+, a graph rewriting formalism in which rules employ a type graph to specify transformations and control rule applicability. In the present paper, we show that PBPO+ allows for a natural encoding of linear TRS rules that preserves termination globally. This result is a step towards modeling other rewriting formalisms, such as lambda calculus and higher order rewriting, using graph rewriting in a way that preserves properties like termination and confluence. We moreover expect that the encoding can serve as a guide for lifting TRS termination methods to PBPO+ rewriting.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.