From Generalization of Bacon-Shor Codes to High Performance Quantum LDPC Codes

by   Jihao Fan, et al.

We utilize a concatenation scheme to construct new families of quantum error correction codes that include the Bacon-Shor codes. We show that our scheme can lead to asymptotically good quantum codes while Bacon-Shor codes cannot. Further, the concatenation scheme allows us to derive quantum LDPC codes of distance Ω(N^2/3/loglog N) which can improve Hastings's recent result [arXiv:2102.10030] by a polylogarithmic factor. Moreover, assisted by the Evra-Kaufman-Zémor distance balancing construction, our concatenation scheme can yield quantum LDPC codes with non-vanishing code rates and better minimum distance upper bound than the hypergraph product quantum LDPC codes. Finally, we derive a family of fast encodable and decodable quantum concatenated codes with parameters Q=[[N,Ω(√(N)),Ω( √(N))]] and they also belong to the Bacon-Shor codes. We show that Q can be encoded very efficiently by circuits of size O(N) and depth O(√(N)), and can correct any adversarial error of weight up to half the minimum distance bound in O(√(N)) time. To the best of our knowledge, they are the most powerful quantum codes for correcting so many adversarial errors in sublinear time by far.



There are no comments yet.


page 1

page 2

page 3

page 4


The Diagonal Distance of CWS Codes

Quantum degeneracy in error correction is a feature unique to quantum er...

Near-Hashing-Bound Multiple-Rate Quantum Turbo Short-Block Codes

Quantum stabilizer codes (QSCs) suffer from a low quantum coding rate, s...

Construction and Performance of Quantum Burst Error Correction Codes for Correlated Errors

In practical communication and computation systems, errors occur predomi...

Diagonal distance of quantum codes and hardness of the minimum distance problem

The diagonal distance or graph distance is an important parameter of a q...

Numerical and analytical bounds on threshold error rates for hypergraph-product codes

We study analytically and numerically decoding properties of finite rate...

Optimized routines for event generators in QED-PIC codes

In recent years, the prospects of performing fundamental and applied stu...

Linear programming bounds for quantum amplitude damping codes

Given that approximate quantum error-correcting (AQEC) codes have a pote...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.