From Game-theoretic Multi-agent Log Linear Learning to Reinforcement Learning

02/07/2018
by   Mohammadhosein Hasanbeig, et al.
0

Multi-agent Systems (MASs) have found a variety of industrial applications from economics to robotics, owing to their high adaptability, scalability and applicability. However, with the increasing complexity of MASs, multi-agent control has become a challenging problem to solve. Among different approaches to deal with this complex problem, game theoretic learning recently has received researchers' attention as a possible solution. In such learning scheme, by playing a game, each agent eventually discovers a solution on its own. The main focus of this paper is on enhancement of two types of game-theoretic learning algorithms: log linear learning and reinforcement learning. Each algorithm proposed in this paper, relaxes and imposes different assumptions to fit a class of MAS problems. Numerical experiments are also conducted to verify each algorithm's robustness and performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset