From Fair Decision Making to Social Equality

12/07/2018 ∙ by Hussein Mouzannar, et al. ∙ 0

The study of fairness in intelligent decision systems has mostly ignored long-term influence on the underlying population. Yet fairness considerations (e.g. affirmative action) have often the implicit goal of achieving balance among groups within the population. The most basic notion of balance is eventual equality between the qualifications of the groups. How can we incorporate influence dynamics in decision making? How well do dynamics-oblivious fairness policies fare in terms of reaching equality? In this paper, we propose a simple yet revealing model that encompasses (1) a selection process where an institution chooses from multiple groups according to their qualifications so as to maximize an institutional utility and (2) dynamics that govern the evolution of the groups' qualifications according to the imposed policies. We focus on demographic parity as the formalism of affirmative action. We then give conditions under which an unconstrained policy reaches equality on its own. In this case, surprisingly, imposing demographic parity may break equality. When it doesn't, one would expect the additional constraint to reduce utility, however, we show that utility may in fact increase. In more realistic scenarios, unconstrained policies do not lead to equality. In such cases, we show that although imposing demographic parity may remedy it, there is a danger that groups settle at a worse set of qualifications. As a silver lining, we also identify when the constraint not only leads to equality, but also improves all groups. This gives quantifiable insight into both sides of the mismatch hypothesis. These cases and trade-offs are instrumental in determining when and how imposing demographic parity can be beneficial in selection processes, both for the institution and for society on the long run.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.