From a Modified Ambrosio-Tortorelli to a Randomized Part Hierarchy Tree

04/12/2011
by   Sibel Tari, et al.
0

We demonstrate the possibility of coding parts, features that are higher level than boundaries, using a modified AT field after augmenting the interaction term of the AT energy with a non-local term and weakening the separation into boundary/not-boundary phases. The iteratively extracted parts using the level curves with double point singularities are organized as a proper binary tree. Inconsistencies due to non-generic configurations for level curves as well as due to visual changes such as occlusion are successfully handled once the tree is endowed with a probabilistic structure. The work is a step in establishing the AT function as a bridge between low and high level visual processing.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro