Frequentist Consistency of Variational Bayes

05/09/2017
by   Yixin Wang, et al.
0

A key challenge for modern Bayesian statistics is how to perform scalable inference of posterior distributions. To address this challenge, VB methods have emerged as a popular alternative to the classical MCMC methods. VB methods tend to be faster while achieving comparable predictive performance. However, there are few theoretical results around VB. In this paper, we establish frequentist consistency and asymptotic normality of VB methods. Specifically, we connect VB methods to point estimates based on variational approximations, called frequentist variational approximations, and we use the connection to prove a variational Bernstein-von-Mises theorem. The theorem leverages the theoretical characterizations of frequentist variational approximations to understand asymptotic properties of VB. In summary, we prove that (1) the VB posterior converges to the KL minimizer of a normal distribution, centered at the truth and (2) the corresponding variational expectation of the parameter is consistent and asymptotically normal. As applications of the theorem, we derive asymptotic properties of VB posteriors in Bayesian mixture models, Bayesian generalized linear mixed models, and Bayesian stochastic block models. We conduct a simulation study to illustrate these theoretical results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset