Free Bits: Latency Optimization of Mixed-Precision Quantized Neural Networks on the Edge

07/06/2023
by   Georg Rutishauser, et al.
0

Mixed-precision quantization, where a deep neural network's layers are quantized to different precisions, offers the opportunity to optimize the trade-offs between model size, latency, and statistical accuracy beyond what can be achieved with homogeneous-bit-width quantization. To navigate the intractable search space of mixed-precision configurations for a given network, this paper proposes a hybrid search methodology. It consists of a hardware-agnostic differentiable search algorithm followed by a hardware-aware heuristic optimization to find mixed-precision configurations latency-optimized for a specific hardware target. We evaluate our algorithm on MobileNetV1 and MobileNetV2 and deploy the resulting networks on a family of multi-core RISC-V microcontroller platforms with different hardware characteristics. We achieve up to 28.6 negligible accuracy drop from a full-precision baseline on the 1000-class ImageNet dataset. We demonstrate speedups relative to an 8-bit baseline, even on systems with no hardware support for sub-byte arithmetic at negligible accuracy drop. Furthermore, we show the superiority of our approach with respect to differentiable search targeting reduced binary operation counts as a proxy for latency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset