Frank-Wolfe Methods in Probability Space

05/11/2021
by   Carson Kent, et al.
0

We introduce a new class of Frank-Wolfe algorithms for minimizing differentiable functionals over probability measures. This framework can be shown to encompass a diverse range of tasks in areas such as artificial intelligence, reinforcement learning, and optimization. Concrete computational complexities for these algorithms are established and demonstrate that these methods enjoy convergence in regimes that go beyond convexity and require minimal regularity of the underlying functional. Novel techniques used to obtain these results also lead to the development of new complexity bounds and duality theorems for a family of distributionally robust optimization problems. The performance of our method is demonstrated on several nonparametric estimation problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset