Fractionally Subadditive Maximization under an Incremental Knapsack Constraint

06/28/2021 ∙ by Yann Disser, et al. ∙ 0

We consider the problem of maximizing a fractionally subadditive function under a knapsack constraint that grows over time. An incremental solution to this problem is given by an order in which to include the elements of the ground set, and the competitive ratio of an incremental solution is defined by the worst ratio over all capacities relative to an optimum solution of the corresponding capacity. We present an algorithm that finds an incremental solution of competitive ratio at most max{3.293√(M),2M}, under the assumption that the values of singleton sets are in the range [1,M], and we give a lower bound of max{2.449,M} on the attainable competitive ratio. In addition, we establish that our framework captures potential-based flows between two vertices, and we give a tight bound of 2 for the incremental maximization of classical flows with unit capacities.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.