Foundations of self-progressive choice theories

12/27/2022
by   Kemal Yildiz, et al.
0

Consider a population of agents whose choice behaviors are partially comparable according to given primitive orderings. The set of choice functions admissible in the population specifies a choice theory. A choice theory is self-progressive if any aggregate choice behavior consistent with the theory is uniquely representable as a probability distribution over admissible choice functions that are comparable. We establish an equivalence between self-progressive choice theories and (i) well-known algebraic structures called lattices; (ii) the maximizers of supermodular functions over a specific domain of choice functions. We extend our analysis to universally self-progressive choice theories which render unique orderly representations independent of primitive orderings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro