Formal Languages via Theories over Strings
We investigate the properties of formal languages expressible in terms of formulas over quantifier-free theories of word equations, arithmetic over length constraints, and language membership predicates for the classes of regular, visibly pushdown, and deterministic context-free languages. In total, we consider 20 distinct theories and decidability questions for problems such as emptiness and universality for formal languages over them. First, we discuss their relative expressive power and observe a rough division into two hierarchies based on whether or not word equations are present. Second, we consider the decidability status of several important decision problems, such as emptiness and universality. Note that the emptiness problem is equivalent to the satisfiability problem over the corresponding theory. Third, we consider the problem of whether a language in one theory is expressible in another and show several negative results in which this problem is undecidable. These results are particularly relevant in the context of normal forms in both practical and theoretical aspects of string solving.
READ FULL TEXT