References
 [1] Ashtekar, A. and Lewandowski, J. Background independent quantum gravity: a status report. Class. Quantum Grav. 21, R53.[grqc/0404018], 2004.
 [2] ArkaniHamed, N., Cachazo, F., Cheung, C., and Kaplan, J. The SMatrix in Twistor Space. arXiv:0903.2110v2 [hepth], 2009
 [3] Sahu, S., Ghosh, S., Hirata, K., Fujita, D. and Bandyopadhyay, A. Ultrafast microtubule growth through radiofrequencyinduced resonant excitation of tubulin and smallmolecule drugs, to appear in Nature Materials.

[4]
Blum, L. Alan Turing and the Other Theory of Computation (on Turing’s Roundingoff Errors in Matrix Processes) in S Barry Cooper and Jan van Leeuwen (eds), Alan Turing –
His Work and Impact. Elsevier, 2012.  [5] Bridges, D.S. Can constructive mathematics be applied in physics? J. Philos. Logic 28, 439–53, 1999.
 [6] DeWitt, B.S. and Graham, R.D., eds. The ManyWorlds Interpretation of Quantum Mechanics. Princeton Univ. Press, Princeton, 1973.
 [7] Diósi, L. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A40, 1165–74, 1989.
 [8] Everett, H. “Relative State” formulation of quantum mechanics. In J.A. Wheeler and W.H. Zurek (eds), Quantum Theory and Measurement. Princeton Univ. Press, Princeton, 1983), originally in Revs. of Modern Physics, 29, 454–62, 1957.
 [9] Goodstein, R.L. On the restricted ordinal theorem. J. Symbolic Logic 9, 33–41, 1944.
 [10] Hameroff, S.R. and Penrose, R. Conscious events as orchestrated spacetime selections. J. Consciousness Studies 3, 36–63, 1996.
 [11] Hawking, S.W. and Penrose, R. The singularities of gravitational collapse and cosmology, Proc. Roy. Soc., London, A314, 529–548, 1970.
 [12] Israeli, N. and Goldenfeld, N. Computational irreducibility and the predictability of complex physical systems. Phys. Rev. Lett. 92, 074105, 2004.
 [13] Kirby, L.A.S. and Paris, J.B. Accessible independence results for Peano arithmetic, Bull. L.ond. Math. Soc. 14, 285–93, 1982.
 [14] Kronheimer E.H. and Penrose, R. On the structure of causal spaces. Proc. Camb. Phil. Soc. 63, 481–501, 1967.
 [15] Marshall, W., Simon, C., Penrose, R. and Bouwmeester, D. Towards Quantum Superpositions of a Mirror, Phys. Rev. Lett., Vol. 91, Issue 13, 2003.
 [16] von Neumann, J. Mathematical Foundations of Quantum Mechanics. (Princeton Univ. Press, Princeton), 1955.
 [17] Penrose, R. Gravitational collapse and spacetime singularities, Phys. Rev. Lett. 14, 57–59, 1965.
 [18] Penrose, R. Twistor algebra, J. Math. Phys. 8, 345–66, 1967.
 [19] Penrose, R. Angular momentum: an approach to combinatorial spacetime. In T. Bastin (ed), Quantum theory and Beyond, Cambridge University Press, Cambridge, 1971.
 [20] Penrose, R. Shadows of the Mind; An Approach to the Missing Science of Consciousness, Oxford Univ. Press, Oxford, 1994.
 [21] Penrose, R. On gravity’s role in quantum state reduction. Gen. Rel. Grav. 28, 581–600, 1996.
 [22] Penrose, R. Can a computer understand? In Rose, S. (ed), From Brains to Consciousness? Essays on the New Sciences of the Mind, Allen Lane, The Penguin Press, London) 154–179, 1998.
 [23] Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe, Jonathan Cape, London, 2004.
 [24] Penrose, R. The twistor approach to spacetime structures. In A. Ashtekar (ed), 100 Years of Relativity; Spacetime Structure: Einstein and Beyond, World Scientific, Singapore, 2005.
 [25] Penrose, R. Black holes, quantum theory and cosmology (Fourth International Workshop DICE 2008) J. Physics, Conf. Ser. 174, 012001. doi: 10.1088/17426596/174/1/012001, 2009.
 [26] Penrose, R. On attempting to model the mathematical mind, in Cooper, B.S. and Hodges, A. (eds), The Alan Turing Year  The Once and Future Turing, Cambridge University Press, 2012.
 [27] Penrose, R. and Hameroff, S. Consciousness in the Universe: Neuroscience, Quantum SpaceTime Geometry and Orch OR Theory. Journal of Cosmology, Vol. 14, 2011.
 [28] PourEl, M.B. and Richards, I. The wave equation with computable initial data such that its unique solution is not computable, Adv. in Math. 39, 215–239, 1981.
 [29] PourEl, M.B. and Richards, I. Computability in Analysis and Physics. Perspect. Math. Logic, (SpringerVerlag, Berlin, Heidelberg), 206 pp., 2003.
 [30] Russell, B. The Analysis of Matter (Allen and Unwin; reprinted 1954, Dover Publ. Inc., New York), 1927
 [31] Sakharov, A.D. Vacuum Quantum Fluctuations in Curved Space and The Theory of Gravitation, Sov. Phys. Dokl., 12, 1040 [Dokl. Akad. Nauk Ser. Fiz. 177, 70]. Reprinted: (2000) Gen. Rel. Grav., 32 365–367, 1968.
 [32] Schrödinger, E. Science and Humanism: Physics in Our Time. (Cambridge Univ. Press, Cambridge), 1952.
 [33] Stannett, M. Computation and Hypercomputation. Minds and Machines,13, 115–53, 2003.
 [34] Tegmark, M. “Importance of quantum coherence in brain processes,” Phys. Rev. E, 61, pp. 4194–4206, 2000.
 [35] Tittel, W., Brendel, J., Gisin, B., Herzog, T., Zbinden, H., and Gisin N. Experimental demonstration of quantumcorrelations over more than 10 kilometers arXiv:quantph/9707042v3, 2008.
 [36] Turing, A.M. On computable numbers, with an application to the Entscheidungsproblem, Proc. Lond. Math. Soc. (ser. 2) 42, 230–265; a correction 43, 544–546, 1937.
 [37] Turing, A.M. Computability and 1definability. J. Symb. Log., 2, 153–163, 1937.
 [38] Turing, A.M. Systems of logic based on ordinals. P. Lond. Math. Soc., 45 (2), 161–228, 1939.
 [39] Turing, A.M. ‘Intelligent machinery’, with AMS corrections and additions. Pages numbered 1–37, with 2 unnumbered pages of references and notes. Page 1 has MS note by R.O. Gandy, ‘Turing’s typed draft’.n.d., 1948.
 [40] Turing, A.M. Computing machinery and intelligence, Mind 59 no. 236; reprinted in D.R. Hofstadter and D.C. Dennett (eds), The Mind’s I, Basic Books, Inc.; Penguin Books, Ltd; Harmondsworth, Middx. 1981, 1950.
 [41] Weihrauch, K. Computable Analysis: An Introduction. Texts in Theoretical Computer Science, Springer, 2000.
 [42] Wheeler, J.A. Geometrodynamics (Società Italiana Fisica: Questioni di fisica moderna, V.1, and Academic Press, Inc., New York), 1982.
 [43] Wheeler, J.A. Law without law, in Quantum Theory and Measurement. In J.A. Wheeler, J.A. and Zurek, W.H. (eds), Princeton Univ. Press, Princeton, pp. 182–213, 1983.
 [44] Wolfram, S. A New Kind of Science, Wolfram Media Inc, 2002.
 [45] Zenil, H. and Delahaye, J.P. On the Algorithmic Nature of the World. In G. DodigCrnkovic and M. Burgin (eds), Information and Computation, World Scientific, 2010.
 [46] Zenil, H, SolerToscano, F., and Joosten, J. J. Empirical Encounters With Computational Irreducibility and Unpredictability, Minds and Machines, vol. 21, 2011.
Comments
There are no comments yet.