Forecasting with Multiple Seasonality

08/27/2020 ∙ by Tianyang Xie, et al. ∙ 0

An emerging number of modern applications involve forecasting time series data that exhibit both short-time dynamics and long-time seasonality. Specifically, time series with multiple seasonality is a difficult task with comparatively fewer discussions. In this paper, we propose a two-stage method for time series with multiple seasonality, which does not require pre-determined seasonality periods. In the first stage, we generalize the classical seasonal autoregressive moving average (ARMA) model in multiple seasonality regime. In the second stage, we utilize an appropriate criterion for lag order selection. Simulation and empirical studies show the excellent predictive performance of our method, especially compared to a recently popular `Facebook Prophet' model for time series.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.