Forecasting NIFTY 50 benchmark Index using Seasonal ARIMA time series models

01/09/2020
by   Amit Tewari, et al.
0

This paper analyses how Time Series Analysis techniques can be applied to capture movement of an exchange traded index in a stock market. Specifically, Seasonal Auto Regressive Integrated Moving Average (SARIMA) class of models is applied to capture the movement of Nifty 50 index which is one of the most actively exchange traded contracts globally [1]. A total of 729 model parameter combinations were evaluated and the most appropriate selected for making the final forecast based on AIC criteria [8]. NIFTY 50 can be used for a variety of purposes such as benchmarking fund portfolios, launching of index funds, exchange traded funds (ETFs) and structured products. The index tracks the behaviour of a portfolio of blue chip companies, the largest and most liquid Indian securities and can be regarded as a true reflection of the Indian stock market [2].

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset