DeepAI
Log In Sign Up

Forecasting Financial Market Structure from Network Features using Machine Learning

10/22/2021
by   Douglas Castilho, et al.
0

We propose a model that forecasts market correlation structure from link- and node-based financial network features using machine learning. For such, market structure is modeled as a dynamic asset network by quantifying time-dependent co-movement of asset price returns across company constituents of major global market indices. We provide empirical evidence using three different network filtering methods to estimate market structure, namely Dynamic Asset Graph (DAG), Dynamic Minimal Spanning Tree (DMST) and Dynamic Threshold Networks (DTN). Experimental results show that the proposed model can forecast market structure with high predictive performance with up to 40% improvement over a time-invariant correlation-based benchmark. Non-pair-wise correlation features showed to be important compared to traditionally used pair-wise correlation measures for all markets studied, particularly in the long-term forecasting of stock market structure. Evidence is provided for stock constituents of the DAX30, EUROSTOXX50, FTSE100, HANGSENG50, NASDAQ100 and NIFTY50 market indices. Findings can be useful to improve portfolio selection and risk management methods, which commonly rely on a backward-looking covariance matrix to estimate portfolio risk.

READ FULL TEXT

page 1

page 5

page 10

page 11

page 12

09/09/2020

Forecasting financial markets with semantic network analysis in the COVID-19 crisis

This paper uses a new textual data index for predicting stock market dat...
05/02/2022

Forecasting Market Changes using Variational Inference

Though various approaches have been considered, forecasting near-term ma...
07/14/2022

Learning Embedded Representation of the Stock Correlation Matrix using Graph Machine Learning

Understanding non-linear relationships among financial instruments has v...
03/23/2021

Reliability of MST identification in correlation-based market networks

Maximum spanning tree (MST) is a popular tool in market network analysis...
01/29/2023

Long-Term Modeling of Financial Machine Learning for Active Portfolio Management

In the practical business of asset management by investment trusts and t...
04/22/2022

Sequential Learning and Economic Benefits from Dynamic Term Structure Models

This paper explores the statistical and economic importance of restricti...