Forecasting Environmental Data: An example to ground-level ozone concentration surfaces

02/07/2022
by   Alexander Gleim, et al.
0

Environmental problems are receiving increasing attention in socio-economic and health studies. This in turn fosters advances in recording and data collection of many related real-life processes. Available tools for data processing are often found too restrictive as they do not account for the rich nature of such data sets. In this paper, we propose a new statistical perspective on forecasting spatial environmental data collected sequentially over time. We treat this data set as a surface (functional) time series with a possibly complicated geographical domain. By employing novel techniques from functional data analysis we develop a new forecasting methodology. Our approach consists of two steps. In the first step, time series of surfaces are reconstructed from measurements sampled over some spatial domain using a finite element spline smoother. In the second step, we adapt the dynamic functional factor model to forecast a surface time series. The advantage of this approach is that we can account for and explore simultaneously spatial as well as temporal dependencies in the data. A forecasting study of ground-level ozone concentration over the geographical domain of Germany demonstrates the practical value of this new perspective, where we compare our approach with standard functional benchmark models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset