Forecast Evaluation in Large Cross-Sections of Realized Volatility

12/09/2021
by   Christis Katsouris, et al.
0

In this paper, we consider the forecast evaluation of realized volatility measures under cross-section dependence using equal predictive accuracy testing procedures. We evaluate the predictive accuracy of the model based on the augmented cross-section when forecasting Realized Volatility. Under the null hypothesis of equal predictive accuracy the benchmark model employed is a standard HAR model while under the alternative of non-equal predictive accuracy the forecast model is an augmented HAR model estimated via the LASSO shrinkage. We study the sensitivity of forecasts to the model specification by incorporating a measurement error correction as well as cross-sectional jump component measures. The out-of-sample forecast evaluation of the models is assessed with numerical implementations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro