Foot Pressure from Video: A Deep Learning Approach to Predict Dynamics from Kinematics

11/30/2018
by   Savinay Nagendra, et al.
10

Human gait stability analysis is a key to understanding locomotion and control of body equilibrium, with numerous applications in the fields of Kinesiology, Medicine and Robotics. This work introduces a novel approach to learn dynamics of a human body from kinematics to aid stability analysis. We propose an end-to-end deep learning architecture to regress foot pressure from a human pose derived from video. This approach utilizes human Body-25 joints extracted from videos of subjects performing choreographed Taiji (Tai Chi) sequences using OpenPose estimation. The derived human pose data and corresponding foot pressure maps are used to train a convolutional neural network with residual architecture, termed PressNET, in an end-to-end fashion to predict the foot pressure corresponding to a given human pose. We create the largest dataset for simultaneous video and foot pressure on five subjects containing greater than 350k frames. We perform cross-subject evaluation with data from the five subjects on two versions of PressNET to evaluate the performance of our networks. KNearest Neighbors (KNN) is used to establish a baseline for comparisons and evaluation. We empirically show that PressNet significantly outperform KNN on all the splits.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset