Follow the Curve: Robotic-Ultrasound Navigation with Learning Based Localization of Spinous Processes for Scoliosis Assessment

09/11/2021
by   Maria Victorova, et al.
0

The scoliosis progression in adolescents requires close monitoring to timely take treatment measures. Ultrasound imaging is a radiation-free and low-cost alternative in scoliosis assessment to X-rays, which are typically used in clinical practice. However, ultrasound images are prone to speckle noises, making it challenging for sonographers to detect bony features and follow the spine's curvature. This paper introduces a robotic-ultrasound approach for spinal curvature tracking and automatic navigation. A fully connected network with deconvolutional heads is developed to locate the spinous process efficiently with real-time ultrasound images. We use this machine learning-based method to guide the motion of the robot-held ultrasound probe and follow the spinal curvature while capturing ultrasound images and correspondent position. We developed a new force-driven controller that automatically adjusts the probe's pose relative to the skin surface to ensure a good acoustic coupling between the probe and skin. After the scanning, the acquired data is used to reconstruct the coronal spinal image, where the deformity of the scoliosis spine can be assessed and measured. To evaluate the performance of our methodology, we conducted an experimental study with human subjects where the deviations from the image center during the robotized procedure are compared to that obtained from manual scanning. The angles of spinal deformity measured on spinal reconstruction images were similar for both methods, implying that they equally reflect human anatomy.

READ FULL TEXT

page 1

page 2

page 3

page 5

page 6

page 7

page 8

research
05/07/2022

Reliability of Robotic Ultrasound Scanning for Scoliosis Assessment in Comparison with Manual Scanning

Background: Ultrasound (US) imaging for scoliosis assessment is challeng...
research
06/11/2019

Design and integration of a parallel, soft robotic end-effector for extracorporeal ultrasound

In this work we address limitations in state-of-the-art ultrasound robot...
research
02/26/2020

Force-Ultrasound Fusion: Bringing Spine Robotic-US to the Next "Level"

Spine injections are commonly performed in several clinical procedures. ...
research
04/17/2022

Automatic spinal curvature measurement on ultrasound spine images using Faster R-CNN

Ultrasound spine imaging technique has been applied to the assessment of...
research
07/19/2018

EchoFusion: Tracking and Reconstruction of Objects in 4D Freehand Ultrasound Imaging without External Trackers

Ultrasound (US) is the most widely used fetal imaging technique. However...
research
03/04/2022

Ultrasound-Guided Assistive Robots for Scoliosis Assessment with Optimization-based Control and Variable Impedance

Assistive robots for healthcare have seen a growing demand due to the gr...
research
07/31/2019

Embedding Human Heuristics in Machine-Learning-Enabled Probe Microscopy

Scanning probe microscopists generally do not rely on complete images to...

Please sign up or login with your details

Forgot password? Click here to reset