Flood Prediction Using Machine Learning Models: Literature Review

08/07/2019
by   Amir Mosavi, et al.
0

Floods are among the most destructive natural disasters, which are highly complex to model. The research on the advancement of flood prediction models contributed to risk reduction, policy suggestion, minimization of the loss of human life, and reduction the property damage associated with floods. To mimic the complex mathematical expressions of physical processes of floods, during the past two decades, machine learning (ML) methods contributed highly in the advancement of prediction systems providing better performance and cost-effective solutions. Due to the vast benefits and potential of ML, its popularity dramatically increased among hydrologists. Researchers through introducing novel ML methods and hybridizing of the existing ones aim at discovering more accurate and efficient prediction models. The main contribution of this paper is to demonstrate the state of the art of ML models in flood prediction and to give insight into the most suitable models. In this paper, the literature where ML models were benchmarked through a qualitative analysis of robustness, accuracy, effectiveness, and speed are particularly investigated to provide an extensive overview on the various ML algorithms used in the field. The performance comparison of ML models presents an in-depth understanding of the different techniques within the framework of a comprehensive evaluation and discussion. As a result, this paper introduces the most promising prediction methods for both long-term and short-term floods. Furthermore, the major trends in improving the quality of the flood prediction models are investigated. Among them, hybridization, data decomposition, algorithm ensemble, and model optimization are reported as the most effective strategies for the improvement of ML methods.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

07/28/2020

Coupling Machine Learning and Crop Modeling Improves Crop Yield Prediction in the US Corn Belt

This study investigates whether coupling crop modeling and machine learn...
09/29/2020

A Comprehensive Survey of Machine Learning Applied to Radar Signal Processing

Modern radar systems have high requirements in terms of accuracy, robust...
08/13/2020

A community-powered search of machine learning strategy space to find NMR property prediction models

The rise of machine learning (ML) has created an explosion in the potent...
04/19/2020

COVID-19 Outbreak Prediction with Machine Learning

Several outbreak prediction models for COVID-19 are being used by offici...
07/01/2020

Data-Driven Method for Enhanced Corrosion Assessment of Reinforced Concrete Structures

Corrosion is a major problem affecting the durability of reinforced conc...
05/18/2022

SoK: The Impact of Unlabelled Data in Cyberthreat Detection

Machine learning (ML) has become an important paradigm for cyberthreat d...
05/28/2021

Data Acquisition for Improving Machine Learning Models

The vast advances in Machine Learning over the last ten years have been ...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.