Flexible SVBRDF Capture with a Multi-Image Deep Network

by   Valentin Deschaintre, et al.

Empowered by deep learning, recent methods for material capture can estimate a spatially-varying reflectance from a single photograph. Such lightweight capture is in stark contrast with the tens or hundreds of pictures required by traditional optimization-based approaches. However, a single image is often simply not enough to observe the rich appearance of real-world materials. We present a deep-learning method capable of estimating material appearance from a variable number of uncalibrated and unordered pictures captured with a handheld camera and flash. Thanks to an order-independent fusing layer, this architecture extracts the most useful information from each picture, while benefiting from strong priors learned from data. The method can handle both view and light direction variation without calibration. We show how our method improves its prediction with the number of input pictures, and reaches high quality reconstructions with as little as 1 to 10 images – a sweet spot between existing single-image and complex multi-image approaches.


page 1

page 3

page 7

page 8

page 10

page 11

page 13

page 14


Blind Recovery of Spatially Varying Reflectance from a Single Image

We propose a new technique for estimating spatially varying parametric m...

Single-Image SVBRDF Capture with a Rendering-Aware Deep Network

Texture, highlights, and shading are some of many visual cues that allow...

Guided Fine-Tuning for Large-Scale Material Transfer

We present a method to transfer the appearance of one or a few exemplar ...

UMat: Uncertainty-Aware Single Image High Resolution Material Capture

We propose a learning-based method to recover normals, specularity, and ...

Deep SVBRDF Estimation on Real Materials

Recent work has demonstrated that deep learning approaches can successfu...

Scale-recurrent Network for Deep Image Deblurring

In single image deblurring, the "coarse-to-fine" scheme, i.e. gradually ...

Two-shot Spatially-varying BRDF and Shape Estimation

Capturing the shape and spatially-varying appearance (SVBRDF) of an obje...

Please sign up or login with your details

Forgot password? Click here to reset