Flexible Multiple Access Enabling Low-Latency Communications: Introducing NOMA-R

01/28/2020
by   Mouktar Bello, et al.
0

Various verticals in 5G and beyond (B5G) networks require very stringent latency guarantees, while at the same time envisioning massive connectivity. As a result, choosing the optimal multiple access (MA) technique to achieve low latency is a key enabler of B5G. In particular, this issue is more acute in uplink transmissions due to the potentially high number of collisions. On this premise, in the present contribution we discuss the issue of delay-sensitive uplink connectivity using optimized MA techniques; to this end, we perform a comparative analysis of various MA approaches with respect to the achievable effective capacity (EC). As opposed to standard rate (PHY) or throughput (MAC) analyses, we propose the concept of the effective capacity as a suitable metric for characterizing jointly PHY-MAC layer delays. The palette of investigated MA approaches includes standard orthogonal MA (OMA) and power domain non orthogonal MA (NOMA) in uplink scenarios, both considering random pairing and optimized pairing alternatives. It further extends to encompass a recently proposed third alternative, referred to as NOMA-Relevant (NOMA-R), which extends OMA and NOMA approaches by flexibly selecting the MA technique. We show that optimizing both user pairing and MA selection increases the network EC, especially when stringent delay constraints are in place; thus a flexible MA is a potentially preferable strategy for future low latency applications

READ FULL TEXT

page 3

page 7

page 8

research
04/23/2020

Performance Analysis of Uplink NOMA-Relevant Strategy Under Statistical Delay QoS Constraints

A new multiple access (MA) strategy, referred to as non orthogonal multi...
research
06/05/2019

Opportunistic NOMA-based Low-Latency Uplink Transmissions

In this paper, we study the application of opportunistic non-orthogonal ...
research
12/17/2019

NOMA versus OMA in Finite Blocklength Regime: Link-Layer Rate Performance

In this paper, we investigate the latency performance comparison of non-...
research
03/09/2020

Performance Analysis of NOMA Uplink Networks under Statistical QoS Delay Constraints

In the fifth generation and beyond (B5G), delayconstraints emerge as a t...
research
01/30/2020

Asymptotic regime analysis of NOMA uplink networks under QoS delay Constraints

In the fifth generation and beyond (B5G) technologies, delay constrains ...
research
06/28/2021

Collaborative Edge Learning in MIMO-NOMA Uplink Transmission Environment

Multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA...
research
10/20/2022

Low-Latency Hybrid NOMA-TDMA: QoS-Driven Design Framework

Enabling ultra-reliable and low-latency communication services while pro...

Please sign up or login with your details

Forgot password? Click here to reset