Flexible Auto-weighted Local-coordinate Concept Factorization: A Robust Framework for Unsupervised Clustering

09/02/2019
by   Zhao Zhang, et al.
11

Concept Factorization (CF) and its variants may produce inaccurate representation and clustering results due to the sensitivity to noise, hard constraint on the reconstruction error and pre-obtained approximate similarities. To improve the representation ability, a novel unsupervised Robust Flexible Auto-weighted Local-coordinate Concept Factorization (RFA-LCF) framework is proposed for clustering high-dimensional data. Specifically, RFA-LCF integrates the robust flexible CF by clean data space recovery, robust sparse local-coordinate coding and adaptive weighting into a unified model. RFA-LCF improves the representations by enhancing the robustness of CF to noise and errors, providing a flexible constraint on the reconstruction error and optimizing the locality jointly. For robust learning, RFA-LCF clearly learns a sparse projection to recover the underlying clean data space, and then the flexible CF is performed in the projected feature space. RFA-LCF also uses a L2,1-norm based flexible residue to encode the mismatch between the recovered data and its reconstruction, and uses the robust sparse local-coordinate coding to represent data using a few nearby basis concepts. For auto-weighting, RFA-LCF jointly preserves the manifold structures in the basis concept space and new coordinate space in an adaptive manner by minimizing the reconstruction errors on clean data, anchor points and coordinates. By updating the local-coordinate preserving data, basis concepts and new coordinates alternately, the representation abilities can be potentially improved. Extensive results on public databases show that RFA-LCF delivers the state-of-the-art clustering results compared with other related methods.

READ FULL TEXT

page 9

page 10

page 11

page 12

page 13

page 14

page 16

research
05/25/2019

Robust Unsupervised Flexible Auto-weighted Local-Coordinate Concept Factorization for Image Clustering

We investigate the high-dimensional data clustering problem by proposing...
research
12/13/2019

Deep Self-representative Concept Factorization Network for Representation Learning

In this paper, we investigate the unsupervised deep representation learn...
research
11/20/2019

Robust Triple-Matrix-Recovery-Based Auto-Weighted Label Propagation for Classification

The graph-based semi-supervised label propagation algorithm has delivere...
research
05/25/2019

Joint Label Prediction based Semi-Supervised Adaptive Concept Factorization for Robust Data Representation

Constrained Concept Factorization (CCF) yields the enhanced representati...
research
08/04/2019

Robust Subspace Discovery by Block-diagonal Adaptive Locality-constrained Representation

We propose a novel and unsupervised representation learning model, i.e.,...
research
06/11/2019

Joint Subspace Recovery and Enhanced Locality Driven Robust Flexible Discriminative Dictionary Learning

We propose a joint subspace recovery and enhanced locality based robust ...
research
08/21/2019

Learning Structured Twin-Incoherent Twin-Projective Latent Dictionary Pairs for Classification

In this paper, we extend the popular dictionary pair learning (DPL) into...

Please sign up or login with your details

Forgot password? Click here to reset